

Syncope and high risk

- Cardiac conditions not the most common cause, but associated with highest mortality
- Up to 16% of all cases presenting with syncope have a cardiac cause
 - especially with increasing age
- Initial assessment should focus on:
 - Is there evidence of risk associated?
 - Should this patient be admitted?
- Of secondary importance is determining:
 - The cause
 - Appropriate treatment

- Appropriate therapy
 - Medication
 - largely unhelpful (except some hereditary conditions)
 - May be pro-arrhythmic
 - ICD
 - Low risk of device failure (? 1 per 300,000)
 - Significant risk of complications
 - Implant complications
 - Device recall
 - Lead and /or device revision
 - Surgical (or percutaneous) intervention
 - Aortic stenosis, HCM has a definite role
 - Reversal of cardiac ischaemia may have a role
 Left cervical sympathetic denervation
- Identification of at-risk patients

Features that suggest increased risk

- History of IHD or heart failure
- Occurs during exertion (but not post exercise)
- Signs of heart failure or structural cardiac disease
- Abnormal ECG
- Occurs without warning > 65 years
- Family history of hereditary cardiac condition or sudden cardiac death
 - New or unexplained SOB (? PE)

Hypertrophic Cardiomyopathy Left ventricular hypertrophy (concentric or asymmetric) in the absence of physiological cause HCM or HOCM 25% have obstruction Genetic cause - Gene mutation in > 1 in 500 population Familial transmission in 90% of cases Sporadic in 10% 14 genes associated Majority sarcomeric protein genes Heabry disease AMP Kinase

■Genetic test identifies cause approx 60% of affected cases

■ Danon disease

Syncope in HCM

- · Mechanical obstruction
 - Systolic anterior motion of AMVL causes gradient across LVOT
 - Conditions of stress or exercise increase myocardial oxygen demand, increase gradient and reduce output (and coronary flow)
 - Sometimes precipitated by post-prandial state or vasodilators (alcohol, GTN, phosphodiesterase inhibitors)

Syncope in HCM - Arrhythmia

- · Conditions for arrhythmia in HCM
 - Pro-arrhythmic substrate
 - Myofibre disarray
 - Fibrosis
 - Trigger
 - Relative ischaemia
 - Exercise (microvascular disease, mismatch supply and demand, LVOT obstruction)
 - Arrhythmia (paroxysmal A Fib, SVT)
 - Emotion

Arrhythmia and sudden death in HCM

- Overall 1% per year
- Higher rates in probands
- Lower rates in family screening services
- 9 50% of all sudden cardiac deaths aged 1-35 years
- Are high-risk patients identifiable?
- Is sudden death preventable?

Familial DCM and arrhythmia Tallaght: University Hospital

- Idiopathic DCM is familial in perhaps 25% of cases
- 100 different genetic causes, including sarcomeric mutations
 - Current gene panels offered are 28-96 genes
 - Cost (in Oxford) £1020 for index case
- Gene mutation identified 5-30%
- Titin mutations may account for 25%
- Risk stratification as per SCD HeFT
 - NYHA Class II-III symptoms
- LV ejection fraction ≤ 35%
- Only approx 20% of this population receive ICD therapy within 5 years of implant
- Recent studies (subgroup analysis DANISH, Sanjay Prasad et al this week's JACC Imaging) suggest presence of LGE (+/- Extent or location) the most reliable predictor of arrhythmia in non-ischaemic DCM

Special cases with DCM

- Higher arrhythmic risk with near-normal LV EF in
 - Lamin A/C disease (association of conduction disease and premature SCD +/- PAF)
 - Myotonic dystrophy
 - Presence of atrial arrhythmia (sustained atrial tachycardia, flutter or fibrillation)
 - severe ECG abnormality (PR ≥ 240 msec, QRS ≥ 120 msec, 2nd or 3rd degree A-V block)
 - Prolongation of A-H and H-V interval on EPS
 - Muscular dystrophies
 - LV variant ARVC

Tallaght University Hospital

Arrhythmogenic (right ventricular) cardiomyopathy (ARVC/D)

- Myocardial cell death and replacement with fat and fibrosis (causing arrhythmia and heart failure RV>LV)
- Inherited in > 50%
- Prevalence unknown estimated at 1 in 5000 but may be more frequent
- Wide variation is penetrance and disease severity
- Risk of sudden death again ~ 1%/year
- 5 disease-causing desmosomal mutations known, accounting for 30-40% clinically diagnosed patients
- Diagnosis relies on TFC (originally 1994, revised 2010)
 - no gold standard for diagnosis

Sudden death in ARVC

- Initially thought to be 2% per year (pre-ICD)
- Family studies suggest overall incidence <<1% per year
- · Risk stratification in ARVC
 - In USA clinical diagnosis usually considered indication for ICD
 - In Germany documented ventricular arrhythmia often treated pharmacologically
 - Clinical risk factors

Clinical risk factors ARVC

- Major morphological abnormalities of RV
 - Severe dilatation +/- systolic impairment +/- aneurysm
 - Significant LV involvement
 - Documented ventricular arrhythmia (especially if poorly tolerated haemodynamically)
 - Unexplained syncope
 - Strong family history SCD
- Pharmacological therapy
 - B-blockers no anti-arrhythmic benefit
 - Sotalol / amiodarone some benefit
- EPS and ablation usually only post-ICD
- ICD may have higher complication rate in those with thinned and fibrosed RV (apex part of 'triangle of dysplasia')

Long QT syndrome

| Prevalence may be 1 in 2000, Autosomal dominant
| Not detectable after death (unless DNA)
| Diagnosis
| Abnormal T-wave morphology +/- QT prolongation
| Inappropriate bradycardia for age
| Inappropriate QT response to exercise (brisk standing)
| Genetic mutation detected in 60-80% (14 genes identified)
| Circumstances of arrhythmia may alter between types
| QT1 (KCNQ1) = events occur during exercise/emotion
| LQT2 (KCNH2) = events occur when startled (telephone, alarm)
| QG73 (SCN5a) = events occur at rest / during sleep
| LQT1 patients more likely to be symptomatic (40%?) but self-limiting syncope more common
| SCD risk higher in LQT3, LQT2

In summary

- Cardiac conditions not the most common cause, but associated with highest mortality
- Up to 16% of all cases presenting with syncope have a cardiac cause (especially with increasing age)
- Initial assessment should focus on:
 - Is there evidence of risk associated?
 - Should this patient be admitted?
- Unexplained syncope in individuals with underlying cardiac conditions often indicates increased mortality risk
 - Should prompt consideration of ICD implant
 - ILR now included on syncope guidelines as reasonable option for individuals in whom features of underlying condition do not otherwise suggest ICD indicated